Using De Moivre’s Theorem to Simplify Trigonometric Identities: The Case of ( cos 4a )

How to Identify Trigonometric Identities Using De Moivre’s Theorem for ( cos 4a 8sin^4a - 8sin^2a 1 )

Introduction to De Moivre’s Theorem

De Moivre’s theorem is a fundamental concept in complex analysis that connects trigonometric functions and complex numbers through the identity:

(1) Ze^{itheta} costheta isintheta)

By raising both sides to the power of 4, we can use this theorem to derive various trigonometric identities, including the one involving ( cos 4a ).

Applying De Moivre’s Theorem to ( e^{i4a} )

Starting with the identity:

(2) e^{i4a} (cos a isin a)^4

We can expand the expression on the right-hand side using the binomial theorem:

(3) (cos a isin a)^4 cos^4a 4icos^3asin a - 6cos^2asin^2a - 4icos asin^3a sin^4a

Separating the real and imaginary parts, we get:

Real part: ( cos^4a - 6cos^2asin^2a sin^4a )

Imaginary part: ( 4cos^3asin a - 4cos asin^3a )

Extracting the Real Part for ( cos 4a )

Focusing on the real part, we have:

(4) cos 4a cos^4a - 6cos^2asin^2a sin^4a

Further simplifying the expression:

(5) cos 4a (cos^2a sin^2a)^2 - 8cos^2asin^2a

Since ( cos^2a sin^2a 1 ), we can substitute this value in:

(6) cos 4a 1 - 8cos^2asin^2a

Using the double-angle identity ( cos 2a 2cos^2a - 1 ), we get:

(7) cos^2a frac{1 cos 2a}{2}

Substituting this into the equation:

(8) cos 4a 1 - 8left(frac{1 cos 2a}{2}right)left(frac{1 - cos 2a}{2}right)

(9) cos 4a 1 - 8left(frac{(1 cos 2a)(1 - cos 2a)}{4}right)

(10) cos 4a 1 - 2(1 - cos^2 2a)

(11) cos 4a 1 - 2(1 - sin^2 2a)

(12) cos 4a 1 - 2 2sin^2 2a

(13) cos 4a 8sin^4a - 8sin^2a 1

This completes the derivation and simplification of the trigonometric identity using De Moivre’s theorem.

Conclusion

De Moivre’s theorem provides a powerful tool for simplifying and deriving trigonometric identities. By understanding and applying this theorem, one can efficiently manipulate and identify complex trigonometric expressions. The identity ( cos 4a 8sin^4a - 8sin^2a 1 ) is a prime example of how De Moivre’s theorem can be used to derive and simplify such identities.