In this article, we will explore the solution of the trigonometric equation 2sin^{-1}xsin^{-1}2xfrac{pi}{2}. This problem involves the application of inverse sine functions, sine identities, and algebraic manipulation. Let's break it down step by step:
Solution Part 1
To begin, we can isolate one of the inverse sine terms. Start with the given equation:
2sin^{-1}x sin^{-1}2x frac{pi}{2}
Isolate sin^{-1}2x:
sin^{-1}2x frac{pi}{2} - 2sin^{-1}x
Now, apply the sine function to both sides:
2x sinleft(frac{pi}{2} - 2sin^{-1}xright)
Use the identity sinleft(frac{pi}{2} - thetaright) costheta to simplify:
2x cosleft(2sin^{-1}xright)
Apply the double angle formula for cosine, cos2theta 1 - 2sin^2theta, where theta sin^{-1}x and hence:
cosleft(2sin^{-1}xright) 1 - 2sin^2left(sin^{-1}xright) 1 - 2x^2
Substitute this into the previous equation:
2x 1 - 2x^2
Rearrange the equation to form a quadratic equation:
2x^2 - 2x - 1 0
Solution Part 2
Use the quadratic formula to solve for x. The quadratic formula is given by:
x frac{-b pm sqrt{b^2 - 4ac}}{2a}
Where a 2, b -2, and c -1. Substitute these values into the formula:
x frac{-(-2) pm sqrt{(-2)^2 - 4 cdot 2 cdot (-1)}}{2 cdot 2} frac{2 pm sqrt{4 8}}{4} frac{2 pm sqrt{12}}{4} frac{2 pm 2sqrt{3}}{4} frac{1 pm sqrt{3}}{2}
We now have two potential solutions:
x frac{1 sqrt{3}}{2} x frac{1 - sqrt{3}}{2}Validation of Solutions
We need to check which of these solutions are valid within the range of sin^{-1}, which is [-1, 1].
x frac{1 sqrt{3}}{2} approx 0.366 is within the range [-1, 1], so it is a valid solution. x frac{1 - sqrt{3}}{2} approx -1.366 is not within the range, so it is not a valid solution.Final Solution
The only valid solution is:
boxed{frac{1 - sqrt{3}}{2}}
Alternative Solution Method
Let sin^{-1}x alpha implies x sin alpha.
Let sin^{-1}2x beta implies 2x sin beta.
Consider the following diagram for other values:
Given: 2sin^{-1}x sin^{-1}2x frac{pi}{2} implies 2alpha beta frac{pi}{2}.
Taking the cosine of both sides:
cos2alpha beta cosfrac{pi}{2} 0
Implies cos2alpha cosbeta - sin2alpha sinbeta 0
Implies tan2alpha cotbeta
Implies frac{2tanalpha}{1 - tan^2alpha} frac{1}{tanbeta}
Implies frac{2x}{sqrt{1-x^2}(1 - frac{x^2}{1-x^2})} frac{sqrt{1-4x^2}}{2x}
Implies frac{4x^2}{1 - 2x^2} sqrt{frac{1-4x^2}{1-x^2}}
Squaring both sides:
Implies frac{16x^4}{1 - 2x^2} frac{1-4x^2}{1-x^2}
Implies 16x^4 (1 - x^2) (1-4x^2)(1 - 2x^2)
Implies 16x^4 - 16x^6 1 - 4x^2 - 4x^4 8x^4
Implies 4x^4 - 8x^2 - 1 0
Implies x^2 frac{8 pm sqrt{64 - 16}}{8} frac{8 pm 4sqrt{3}}{8}
Implies x^2 frac{2 pm sqrt{3}}{2}
Implies x pm sqrt{frac{2 pm sqrt{3}}{2}}
Validation of Solutions (Alternative Method)
Check the 4 possibilities:
x sqrt{frac{2 sqrt{3}}{2}} approx 1.366 is not within the range, so it is not a valid solution. x -sqrt{frac{2 sqrt{3}}{2}} approx -1.366 is not within the range, so it is not a valid solution. x -sqrt{frac{2 - sqrt{3}}{2}} frac{sqrt{3}-1}{2} is approximately 0.37437, and this value satisfies the equation, making it a valid solution. x sqrt{frac{2 - sqrt{3}}{2}} approx 0.37437, but this is also a valid solution as it is positive and within the range.After validation, the valid solutions are:
x -sqrt{frac{2 - sqrt{3}}{2}} frac{sqrt{3}-1}{2} and other valid ones within the range.
The valid solution is:
boxed{frac{sqrt{3}-1}{2}}