Solving Systems of Equations with Ordered Triples
In this article, we will explore how to solve a complex system of equations using the method of ordered triples. We will walk through the process step-by-step, providing detailed explanations and insights to help you understand the underlying mathematical principles at play.
Introduction to the Problem
Consider the following system of equations:
[begin{cases} xyxyz 120 yzxyz 96 xzxyz 72 end{cases}]From these equations, we introduce a new variable, (s x y z). This will allow us to simplify the original system and solve it more effectively.
Introducing a New Variable
Using the new variable (s x y z), we rewrite the original system in terms of (s):
(x y s 120) (y z s 96) (x z s 72)We can further express these equations as fractions to isolate the products:
(x y frac{120}{s}) (y z frac{96}{s}) (x z frac{72}{s})Expressing x, y, and z in Terms of s
We now express (x), (y), and (z) in terms of (s). Starting with the first equation:
(x y frac{120}{s})
From the second equation, we have:
(y z frac{96}{s})
Finally, from the third equation:
(x z frac{72}{s})
To find (z) in terms of (s) and (x), we start with the expression for (x y):
(y frac{120}{s x})
Substituting (y) into the second equation:
(left(frac{120}{s x} - xright) z frac{96}{s})
This simplifies to:
(z frac{96}{s} - frac{120}{s} x frac{-24}{s} x)
Substituting (y) into the third equation to find (x):
(x left(frac{-24}{s} xright) frac{72}{s})
This simplifies to:
(2x - frac{24}{s} x frac{72}{s})
(2x frac{72}{s} frac{24}{s} x)
(2x frac{96}{s} x)
(x frac{48}{s})
Substituting (x) back to find (y) and (z):
(y frac{120}{s} - frac{48}{s} frac{72}{s})
(z frac{-24}{s} cdot frac{48}{s} frac{24}{s})
Thus, we have:
(x frac{48}{s}) (y frac{72}{s}) (z frac{24}{s})Finally, we express (xyz):
(x y z frac{48}{s} cdot frac{72}{s} cdot frac{24}{s} frac{144}{s})
Given that (s x y z), we have:
(s frac{144}{s})
*p>Multiplying both sides by (s):
(s^2 144)
(s 12)
(since (s > 0))
Substituting (s 12) back into the expressions for (x), (y), and (z):
(x frac{48}{12} 4)
(y frac{72}{12} 6)
(z frac{24}{12} 2)
Hence, the solution is (boxed{4, 6, 2}).
Further Analysis
Adding the three equations results in:
(2x2y2zxyz 288)
Dividing by (2):
(xyz^2 144)
(xyz) is either (12) or (-12).
Considering (xyz 12), we find:
(xy frac{120}{xyz} 10) (yz 8) (xz 6)Subtracting each of these equations from (xyz 12) yields:
(x 4) (y 6) (z 2)A similar argument shows that if (xyz -12), then:
(x -4) (y -6) (z -2)Hence, the solutions are (4, 6, 2) and (-4, -6, -2).